Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

نویسندگان

  • Khosro Shahbazi
  • Dimitri J. Mavriplis
  • Nicholas K. Burgess
چکیده

Multigrid algorithms are developed for systems arising from high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The algorithms are based on coupling both pand h-multigrid (ph-multigrid) methods which are used in non-linear or linear forms, and either directly as solvers or as preconditioners to a Newton-Krylov method. The performance of the algorithms are examined in solving the laminar flow over an airfoil configuration. It is shown that the choice of the cycling strategy is crucial in achieving efficient and scalable solvers. For the multigrid solvers, while the order-independent convergence rate is obtained with a proper cycle type, the mesh-independent performance is achieved only if the coarsest problem is solved to a sufficient accuracy. On the other hand, the multigrid preconditioned NewtonGMRES solver appears to be insensitive to this condition and mesh-independent convergence is achieved under the desirable condition that the coarsest problem is solved using a fixed number of multigrid cycles regardless of the size of the problem. It is concluded that the Newton-GMRES solver with the multigrid preconditioning yields the most efficient and robust algorithm among those studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations

We present a p-multigrid solution algorithm for a high-order discontinuous Galerkin finite element discretization of the compressible Navier–Stokes equations. The algorithm employs an element line Jacobi smoother in which lines of elements are formed using coupling based on a p = 0 discretization of the scalar convection–diffusion equation. Fourier analysis of the two-level p-multigrid algorith...

متن کامل

Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations

A high-order discontinuous Galerkin finite element discretization and p-multigrid solution procedure for the compressible Navier-Stokes equations are presented. The discretization has an element-compact stencil such that only elements sharing a face are coupled, regardless of the solution space. This limited coupling maximizes the effectiveness of the p-multigrid solver, which relies on an elem...

متن کامل

Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method

The aim of this paper is to investigate theoretically as well as experimentally an algebraic multilevel algorithm for the solution of the linear systems arising from the discontinuous Galerkin method. The smoothed aggregation multigrid, introduced by Vaněk for the conforming finite element method, is applied to low-order discretizations of convection-diffusion equations. For the elliptic model ...

متن کامل

On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations

We construct a local Lax-Friedrichs type positivity-preserving flux for compressible Navier-Stokes equations, which can be easily extended to high dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge-Kutta tim...

متن کامل

A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations

This paper presents a mesh adaptation method for higher-order (p > 1) discontinuous Galerkin (DG) discretizations of the two-dimensional, compressible Navier–Stokes equations. A key feature of this method is a cut-cell meshing technique, in which the triangles are not required to conform to the boundary. This approach permits anisotropic adaptation without the difficulty of constructing meshes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 228  شماره 

صفحات  -

تاریخ انتشار 2009